[SHOWTOGROUPS=4,20]
[/SHOWTOGROUPS]
- Hyperexponential distribution: See Mixtures of Distributions.
- Hypergeometric distribution: See Hypergeometric Distribution.
- Hypoexponential distribution: See Transformations of Random Numbers.
- Inverse chi-squared distribution†: df / (GammaDist(df * 0.5, 2)), where df is the number of degrees of freedom. The scale parameter (sigma) is usually 1.0 / df.
- Inverse Gaussian distribution (Wald distribution): Generate n = mu + (mu*mu*y/(2*lamda)) - mu * sqrt(4 * mu * lamda * y + mu * mu * y * y) / (2 * lamda), where y = pow(Normal(0, 1), 2), then return n if RNDU01OneExc() <= mu / (mu + n), or mu * mu / n otherwise. mu is the mean and lamda is the scale; both parameters are greater than 0. Based on method published in (Devroye 1986)(14).
- kth-order statistic distribution: BetaDist(k, n+1-k). Returns the kth smallest out of n uniform random numbers. See also (Devroye 1986, p. 210)(14).
- Kumaraswamy distribution⬦: pow(1-pow(RNDU01ZeroExc(),1.0/b),1.0/a), where a and b are shape parameters.
- Landau distribution: See stable distribution.
- Lévy distribution†: 0.5 / GammaDist(0.5, 1). The scale parameter (sigma) is also called dispersion.
- Logarithmic logistic distribution: See beta prime distribution.
- Logarithmic series distribution: Generate n = NegativeBinomialInt(1, py - px, py)+1 (where px/py is a parameter in (0,1)), then return n if ZeroOrOne(1, n) == 1, or repeat this process otherwise (Flajolet et al., 2010)(9). If the application can trade accuracy for speed, the following can be used instead: floor(1.0 - Expo(log1p(-pow(1.0 - p, RNDU01ZeroOneExc())))), where p is the parameter in (0, 1); see (Devroye 1986)(14).
- Logistic distribution†: (ln(x)-log1p(-x)) (logit function), where x is RNDU01ZeroOneExc().
- Log-multinormal distribution: See Multivariate Normal (Multinormal) Distribution.
- Max-of-uniform distribution: BetaDist(n, 1). Returns a number that simulates the largest out of n uniform random numbers. See also (Devroye 1986, p. 675)(14).
- Maxwell distribution†: sqrt(GammaDist(1.5, 2)).
- Min-of-uniform distribution: BetaDist(1, n). Returns a number that simulates the smallest out of n uniform random numbers. See also (Devroye 1986, p. 210)(14).
- Moyal distribution: See the Для просмотра ссылки Войди
или Зарегистрируйся. - Multinomial distribution: See Multinomial Distribution.
- Multivariate Poisson distribution: See the Для просмотра ссылки Войди
или Зарегистрируйся. - Multivariate t-copula: See the Для просмотра ссылки Войди
или Зарегистрируйся. - Multivariate t-distribution: See the Для просмотра ссылки Войди
или Зарегистрируйся. - Negative binomial distribution (NegativeBinomial(successes, p)): See Negative Binomial Distribution. The negative binomial distribution can take a successes value other than an integer; in that case, a negative binomial (successes, p) random number is Poisson(GammaDist(successes, (1 - p) / p)).
- Negative multinomial distribution: See the Для просмотра ссылки Войди
или Зарегистрируйся. - Noncentral beta distribution⬦: BetaDist(a + Poisson(nc), b), where nc (a noncentrality), a, and b are greater than 0.
- Parabolic distribution⬦: BetaDist(2, 2) (Saucier 2000, p. 30).
- Pascal distribution: NegativeBinomial(successes, p) + successes, where successes and p have the same meaning as in the negative binomial distribution, except successes is always an integer.
- Pearson VI distribution: GammaDist(v, 1) / GammaDist(w, 1), where v and w are shape parameters greater than 0 (Saucier 2000, p. 33; there, an additional b parameter is defined, but that parameter is canceled out in the source code).
- Piecewise constant distribution: See Weighted Choice With Replacement.
- Piecewise linear distribution: See Continuous Weighted Choice.
- Pólya–Aeppli distribution: See Transformations of Random Numbers: Additional Examples.
- Power distribution: BetaDist(alpha, 1) / b, where alpha is the shape and b is the domain. Nominally in the interval (0, 1).
- Power law distribution: pow(RNDRANGE(pow(mn,n+1),pow(mx,n+1)), 1.0 / (n+1)), where n is the exponent, mn is the minimum, and mx is the maximum. Reference.
- Power lognormal distribution: See the Для просмотра ссылки Войди
или Зарегистрируйся. - Power normal distribution: See the Для просмотра ссылки Войди
или Зарегистрируйся. - Product copula: See Для просмотра ссылки Войди
или Зарегистрируйся. - Rice distribution: See Для просмотра ссылки Войди
или Зарегистрируйся. - Rice–Norton distribution: See Для просмотра ссылки Войди
или Зарегистрируйся. - Singh–Maddala distribution: See beta prime distribution.
- Skellam distribution: Poisson(mean1) - Poisson(mean2), where mean1 and mean2 are the means of the two Poisson random numbers.
- Skewed normal distribution: Normal(0, x) + mu + alpha * abs(Normal(0, x)), where x is sigma / sqrt(alpha * alpha + 1.0), mu and sigma have the same meaning as in the normal distribution, and alpha is a shape parameter.
- Snedecor's (Fisher's) F-distribution: GammaDist(m * 0.5, n) / (GammaDist(n * 0.5 + Poisson(sms * 0.5)) * m, 1), where m and n are the numbers of degrees of freedom of two random numbers with a chi-squared distribution, and if sms is other than 0, one of those distributions is noncentral with sum of mean squares equal to sms.
- Stable distribution: See Для просмотра ссылки Войди
или Зарегистрируйся. Four-parameter stable distribution: Stable(alpha, beta) * sigma + mu, where mu is the mean and sigma is the scale; if alpha and beta are 1, the result is a Landau distribution. "Type 0" stable distribution: Stable(alpha, beta) * sigma + (mu - sigma * beta * x), where x is ln(sigma)*2.0/pi if alpha is 1, and tan(pi*0.5*alpha) otherwise. - Standard complex normal distribution: See Для просмотра ссылки Войди
или Зарегистрируйся. - Suzuki distribution: See Rayleigh distribution.
- Tukey lambda distribution: (pow(x, lamda)-pow(1.0-x,lamda))/lamda, where x is RNDU01() and lamda is a shape parameter.
- Twin-t distribution (Baker and Jackson 2018)(76): Generate x, a random Student's t-distributed number (not a noncentral one). Accept x if RNDU01OneExc() < pow((1 + y) / ((1 + y * y) + y), (df + 1) * 0.5), where y = x * x / df and df is the degrees of freedom used to generate the number; repeat this process otherwise.
- von Mises distribution: See Для просмотра ссылки Войди
или Зарегистрируйся. - Waring–Yule distribution: See beta negative binomial distribution.
- Wigner (semicircle) distribution†: (BetaDist(1.5, 1.5)*2-1). The scale parameter (sigma) is the semicircular radius.
- Yule–Simon distribution: See beta negative binomial distribution.
- Zeta distribution: Generate n = floor(pow(RNDU01ZeroOneExc(), -1.0 / r)), and if d / pow(2, r) < (d - 1) * RNDU01OneExc() * n / (pow(2, r) - 1.0), where d = pow((1.0 / n) + 1, r), repeat this process. The parameter r is greater than 0. Based on method described in (Devroye 1986)(14). A zeta distribution truncated by rejecting random values greater than some positive integer is called a Zipf distribution or Estoup distribution. (Note that Devroye uses "Zipf distribution" to refer to the untruncated zeta distribution.)
- Zipf distribution: See zeta distribution.
[/SHOWTOGROUPS]